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We express the Crow-Kimura and Eigen models of quasispecies theory in a functional
integral representation. We formulate the spin coherent state functional integrals using
the Schwinger Boson method. In this formulation, we are able to deduce the long-time
behavior of these models for arbitrary replication and degradation functions. We discuss
the phase transitions that occur in these models as a function of mutation rate. We derive
for these models the leading order corrections to the infinite genome length limit.
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1. INTRODUCTION

The quasispecies models of Eigen® and Crow-Kimura®) are among the simplest
that capture basic aspects of mutation and evolutionary selection in large, ho-
mogeneous populations of viruses. These models are a favorite entry point for
physicists to evolutionary biology, due to the phase transitions that they exhibit
and their mathematical simplicity.®

While the models were originally defined in the continuous time limit, the
first connections to statistical mechanics were made to the discrete-time versions
of these models. In particular, the discrete-time Eigen model, which entails the
additional assumption of allowing only a single mutation at one point in time in
addition to discretization of time, was shown to be equivalent to a particular type of
Ising model.®”) A distinction between the bulk magnetization and the observable,
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surface, magnetization was discovered in the discrete-time Eigen model,!>) and
an analogy to the surface wetting phenomenon in condensed matter was made.
Magnetization is a now-standard term in the physical quasispecies field for average
composition. That is, the magnetization at site j on the genome is the average
composition of the base at that site, averaged over all sequences in the population. A
functional integral representation of the discrete-time Eigen model was introduced
through use of functional delta functions.'”) With this representation, solution of
this particular model was possible for viral replication rates that depend in an
arbitrary way on distance from a single point in genome space. The closely related
Crow-Kimura, or parallel or para-muse, continuous-time model was formulated
as a quantum spin Hamiltonian in Ref. 1, 2. It was formulated as a functional
integral and solved for viral replication rates that depend in an arbitrary way on
distance from a single point in genome space in Ref. 11-13. The discrete-time
Eigen model in a sense interpolates between the continuous-time Eigen model
and the Crow-Kimura model, because its limit as the time step becomes small
is the Crow-Kimura model rather than the Eigen model. What distinguishes the
continuous-time Eigen model from the other models is the possibility of multiple
mutation events in an infinitesimal time step.®

In this manuscript we seek to provide a detailed derivation for a functional
integral representation of the continuous-time parallel and Eigen models of qua-
sispecies theory. These representations are used to find exact solutions of these
continuous-time quasispecies theories in the limit of large genomes. These results
are used to exhibit the phase transitions that occur in these models as a function of
mutation rate. The coherent states formalism that we introduce allows for the first
time the expression of the full time-dependent probability distribution in sequence
space of these quasispecies theories as a function of arbitrary initial and final
conditions. In addition, we use the functional integral expressions to obtain for the
first time the O(1/N) corrections to the mean replication rates in these models.
Finally, we also use the functional integral expressions to find for the first time the
O(1/+/N) width of the virus populations around the most probable genomes in
sequence space.

The rest of the manuscript is organized as follows. In Sec. 2 we map the
continuous-time parallel model onto a spin coherent state path integral using the
Schwinger Boson method. We evaluate the theory for a general replication rate. We
find the corrections to the infinite genome limit. In Sec. 3 we map the continuous-
time Eigen model onto a functional integral, again using the Schwinger Boson
method. While the functional integral appears more singular than in the parallel
case, due to the presence of multiple mutations at a single time step in this model,
we also solve this model for a general replication rate. We also find the corrections
to the infinite genome limit. We discuss the width of the virus population in
genome space in the large NV limit and correlations in the field theory in Sec. 4.
We also find the expression for the full time-dependent probability distribution
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as it depends on initial and final conditions. We conclude in Sec. 5. Much of the
detailed derivations are included in Appendices.

2. SPIN COHERENT STATE REPRESENTATION
OF THE PARALLEL MODEL

2.1. The Parallel Model

In the parallel model, the probability distribution of viruses in the space of all
possible viral genomes is considered. For simplicity, it is assumed that the genome
can be written as a sequence of N binary digits, or spins: s) = +1,1<n < N.
Distances in the genome space are calculated by the Hamming measure: d;; =
(N — ", sLsn)/2. The probability for a virus to be in a given genome state, p;,
1 <i <2V satisfies the parallel model differential equation

dp; 2" 2¥
5= Di (ri - ijlrjpj) + ijlﬂijpj . (1)

Here 7; is the number of offspring per unit period of time, or replication rate,
and p;; = nA(d;; — 1) — NuA(d;;) is the mutation rate to move from sequence
s; to sequence s; per unit period of time. Here A(n) is the Kronecker delta. The
non-linear term in Eq. (1) serves simply to enforce the conservation of probability,
>, pi = 1. We can express the differential equation in a simpler, linear form

dq . 2N

d_tl =riqi + ijllhjq/' ()
with the transformation p;(¢) = ¢;(¢)/ >_ ;4;(t). The explicit form of the replica-

tion rate is r; = Nf(u;), where u; = (1/N)Y_, st.

2.2. The Parallel Model in Operator Form

Motivated by the observation(! that the parallel dynamics in Eq. (2) is equiv-
alent to quantum dynamics in imaginary time, we express the model in an operator
form. We define two kinds of creation and annihilation operators: d,(j), 4} (j),
a=1,2and j =1,..., N. These operators obey the commutation relations

(@i}, a())] = bupdy
[@a(@), ag()] = 0
[al).al)] =0 G

These operators create either a spin-up state for « = 1 or a spin-down state for
o = 2 at position j in the genome. While it might seem more natural to introduce



978 Park and Deem

a single set of creation and annihilation operators to define whether the spin at
position j is up or down, this approach leads to a non-Gaussian field theory even for
a vanishing replication rate function. Use of two sets of creation and annihilation
operators leads to a Gaussian field theory, with non-quadratic terms stemming
from the replication rate function. We find this second form of the theory more
convenient for calculation. This second form, moreover, can be extended to the
case where the sequence alphabet is larger than binary. Since the state is one and
only one of the possible letters at position j, spin-up or spin-down in the binary
alphabet case considered here, we will enforce the constraint that

> al(Naa() =1 )
o
for all j. Thus, the state at site j is either

11,00 = [a] (H]'[al()]1°10, 0) or [0, 1) = [a! (/)1°[a](/)1'10, 0) (5)

Defining n? to be the power on &}L( j) for spin state i, we can rewrite the parallel
model dynamics as

L p({ai ) = () P({11)) ﬂé[(l ) P({en 1)
Fn P = 1) = P(())] (©)

We introduce the state vector

2N
=Y P(In')I{n'}) @)

i=1

which satisfies the differential equation

Z dP({n'})

d

— 8
dtl% AT l{n'}) ()
We now write this Eq. (8) in operator form. First, we introduce vector notation
for the creation and annihilation operators: a(j) = (a1(j), ax(j)) and a’(j) =

(&f (), &ZT (7)). Then we introduce operators
T:(j) = &' (j)oia())
Ty = a'(j)-a()) €]

with spin matrices

0 1 0 —I 10
£ ) V) R OO
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Then the dynamics of Eq. (8) can be written as

d N
) =—Hly) (11)
with
N N
—H = Nf| Y TGN |+ 1Y [Ti() — To()] (12)
j=1 =1

2.3. The Field Theoretic Representation of the Parallel Model

We convert this operator form of the parallel model into a functional integral
by using coherent states. We define a spin coherent state by

12(j)) = &b DZD=Z DD (0, 0)( /)

TN ) H AR .
_ 32°(j)2(j) A A
= e 22 n’mgzo — [(n, m)(j)) (13)

These coherent states satisfy a completeness relation
7 4z ()d())
1= [ T2 2 oo (14)
J=1

The overlap of coherent states satisfies
Z(NHz())) = o 22 D2 (D~2(N-[2* ()2 ()]2()} (15)

Equation (11) enforces constraint (4) if the initial conditions obey the constraint.
To project arbitrary initial conditions onto this constraint, we use the operator

R N N
P=[1ru ]‘[ AA() - 4G) — 1]

J
2 d)
— / 1_[ LRV piki[aT()-a()-1] (16)
0o o 2m
j=1
The probability to be in a given final state at time ¢ is

P({n}, 1) = Y {{m}le” | {no}) P({no}) (17

{no}
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Using the coherent states identity in a Trotter factorization, we find

d d
P({n}, r)—Z lim ((n}| / [ M} ) (za) e

N dzt Ndznr (7 )
X/ |:l—[ ZM_I(]T)[ZZM 1(]):| |{ZM—1}><{ZM_1}|€7€H

Jj=1

j=1

N g (g (7 )
/ {ﬂ D )} ) (e

N dz*(Ndzo( i o
x / {l_[ M} e~ Pl{z0}) ({20} l{mo}) P({mo})

2
b/
J=1

= lim_ [ (D2 Dal(wlzan) (Z<{ZO}|{no}>P({no}>)

{no}
M 'Y T A
x [ [zt e Ha—1}) (zi}e ™" Pl{zo}) (18)
k=2

For initial conditions that satisfy constraint (4)
(njitzy)) = [ Jem 25 0Onp) - 2y())
J

({zo}l{mo}) = [ Je 25D Wz5() - mo(f) (19)
J

Conversely, if the projection operator is needed for arbitrary initial conditions, we
note

N

2
Plaoti = [ H A it A D g )

2 d}\. i ) )
-/ [T 22e e a0 0)
=1
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For initial conditions that satisfy constraint (4), we may remove the projection
operator to find

N
Pan). = fim [ (D202 Y P [0 - 220 - ()

{no} Jj=1

x e~ 142 o= 3%0)20(7)

M
X 1_[ e_%{ZZ(./')'[Zk(j)_Zk—l(./‘)]_[(Z)/’:U)_qu(./)]'Zk—l(./)]

k=1
s o MEN i Dosma )N rens g an)

e X )mlZi(Norzi ()=1]

= lim [[DzDz]) _ P({no})

M—o00 o)
N
x< [Tn0) - 231() () - mo(j) €5 @)
j=1

where

M
S[2, 2] = 25(j) - 20(j) + Y 7)) - (%) — 21 ()]
k=1

M N
—e Y NS Y z(Dosza()/N | + Af(Ef, zi-)

k=1 j=1
N
+u Y [z (Dorzea1() — 1] (22)
j=1

where € = t/M. To evaluate the expression involving N f[{a'}, {a}], we use nor-
mal ordering. We define

NfU&aT), (a)] = N @ f1{a"), (a)] : +A/[{a), {a)] (23)

where the notation : (-) : means in the operator expression for (-), place all of the
{a'} to the left of the {a}. The additional terms that this operator commutation
generates are collected in Af. We note that N : £ :is O(N), whereas Af is O(1).
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For example, for the quadratic replication rate f(u) = —u , we find
N N 2
I TP Ny 1 LS atiine o
Nf | = al()osa()) | = = | = D_a'(j)osa())
N j=1 2N Jj=1
N

_ % Z al (o3 (Ha)al ()os()a(y)

ij=1

- LN Z 4 (o3[ (A0 + 8103 (HA()
r 2
Ny 1 Y A i v N
2 | WN ;af(j)‘”a(j) toN 2:: a'(j)-a())

Y

N
=N S| 24T (DesaG)/N |« +3 (24)
j=1

so that Af = y/2 in this quadratic case. By induction, we can show that the
general form of the commutation term is

1d*f (&)
Af=3 dE?

In the continuous limit, the probability at time # becomes

(25)

P = | 2D Y Pl [ [0 (0 250) - y(0) e~

{no} Jj=1
(26)

where we have switched the subscripts and arguments of the variables and where

. N
St 7 = [ Y200 = e () + 8000+

J=1

t N
-N /0 dt' | > zi(t)osz,(t)/N
j=1

- [ arar @, we) @)
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At long times, we find that e=*/|{ny}) ~ e/»'|n*) by the Frobenius-Perrone
Theorem,® independent of initial conditions, where f;, is the unique largest
eigenvalue of —H, and |n*) is the corresponding eigenvector. To evaluate this
eigenvalue, we consider the matrix trace. We, furthermore, incorporate the projec-
tion operator by the twisted boundary condition zy(j) = e*/z,(j) arising from
Eq. (20). We find

7 = Treité]l6
2 N sl Y .
dr; dz;())d *
- i1 e ] o
0 L 27 M—o0 k=1 j=1 i
Jj= -
where
M .
=St = [Tttzdle™ " [z }) *9)

k=1

with boundary condition zy(j) = e'* zy,(j). The action is Eq. (22), without the
initial zj(j) - zo(j) term. Since the replication rate depends only on the total
magnetization, the expression for Z can be simplified. In particular, we introduce
& = % Zj-vzl z;(j)o3z—1(j) to find, as discussed in Appendix A, that the partition
function becomes

Z= / [DEDE]eSE-4] (30)

where
S[E.€] = N/ df{ f(t)]+§(f)5(f)+u——Af}—Nan (€29)

and

0 = TrTeh 4o tE()os) (32)

2.4. The Large N Limit of the Parallel Model is a Saddle Point

The general expression of the parallel model partition function involves a
functional integral. Using that N is large, this functional integral can be evaluated
by the saddle point method. We impose the saddle point condition to find

88 Trf’a3e.f$ dt'[uoi+é.03]

SF - 0 - NS(’ A t 4. =

% St TrT elo 4t no1+éc03]

88

o2 =0=—-Nf"(&)+ Né& (33)
38 |z.e.



984 Park and Deem

Evaluating the traces, we find
o= f1(&)
- &
[W? + 82117
For large ¢ we can solve Eq. (34) for &, to find

B~ M (35)

N

& tanh t[p” + £21'/2 (34)

and evaluate Eq. (90) to find
NQ ~tyfp? +82 =11 (36)

N

Using Egs. (35)—(36) in Eq. (31), we find that &, is the value which maximizes

InzZ wE? nw Af
A F_gcz—ﬂ‘l' I_SCZ‘FW
A
= Sl g —u+ oL G7)

This expression is the saddle point evaluation of the parallel model partition
function. It is valid for arbitrary replication rate functions f.

As an example, we calculate the error threshold for two different replication
rate functions. For our first example, we take the case of f(1)=4 and f =0
otherwise. This case leads to the phase transition at 4/ = 1. For A/u > 1 a
finite fraction p; of the population is at £, = 1, whereas for 4/u < 1, all of the
population is at & = 0. The fraction of the population at &, = 1 is determined
by the implicit equation p; /(1) + (1 — p1) f(§ # 1) = In Z/(¢N)|¢ , which gives
p1 =1 — u/A. For our second example, we consider the quadratic fitness f(§) =
k&%/2.(D We find a phase transition at k/u. = 1, where the selected phase occurs
for k/u > 1 with an average magnetization given by & = +./1 — (u/k)*>. The
observable, surface magnetization, u,, is given by the implicit expression f(u,) =
InZ/(tN)lg, so that u, = £(1 — pn/k).

2.5. O(1/N) Corrections to the Parallel Model

We now evaluate the fluctuation corrections to this result. This procedure will
determine the other O(1/N) contributions to the mean replication rate per site,
(In Z2)/(t N). We expand the action around the saddle point limit

_ _ 1 X1 92 328 -
S[E, &1 = S(&,., &, — 8&16 2 —— 8616
[€,&] = S e)+2kJZ_1[ A £:08 + P £:85
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2
t == 551{351} (38)
08,081 [g ¢,
We find
328
= —Nef"(&:)u
aé:kaél £.&,
3%S
T2 1 —eNoy
95981 Iz, .
9%S Troe€—k(1o1+E:03) o, pe(M—lI—k) (01 +Ec03)
—_— = —NEz L 93¢ - (1 _ 8/(])
0&,0& . TreeM(no1+é.03)
2 TroyecM(Ho1+5co3) ?
TNe TreGM(M01+§cas)- (39)

These terms, and the matrix trace, are evaluated in Appendix B. Solving the result
of Eq. (104) for &, in terms of &., we find

InzZ / Af 16
W—f[éc]“l‘ﬂ I_SE_M‘FW—W
Iz
Ne
Using Eq. (25) we find

InZ
W=f[§c]+lh/1—€c2—ﬂ

LB o e — g2
+y gl - — e @

[1—[1— /€)1 -2y /u]"] (40)

This is the expression of the parallel model partition function accurate to O(1/N?).
The expression is accurate for arbitrary smooth replication rate functions f. Shown
in Fig. 1 is the comparison between this analytical result and a numerical calcula-
tion following the algorithm in. Ref. 1.

3. SPIN COHERENT STATE REPRESENTATION
OF THE EIGEN MODEL

3.1. The Eigen Model

In the Eigen model, the probability distribution of viruses in the space of
all possible viral genomes is considered, as in the parallel model. However, when
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Fig. 1. The O(1/N) shift in the free energy is shown (circles). Also shown is the prediction from
Eq. (41) (dashed line). We use f(m) = km?/2 withk/pu =2 and u = 1.

a virus replication event occurs, the virus copies its genome, making mutations
at a rate of 1 — ¢ per base during the replication. The probability distribution in
genome space satisfies

2N N
dp;
d_tl = Z[Biﬂ”j —8;Djlp; — pi Z(’”j —Dj)p; | - (42)
Jj=1

J=1

Here the transition rates are given by B;; = ¢V ~90:/)(1 —¢)0). We de-
fine the parameter u = N(1 — ¢q)/q to characterize the per genome mutation
rate. We take u = O(1). We define ¢ = e and note that in the large N
limit, p; — p@. As with the parallel model, the non-linear terms simply en-
force conservation of probability, and it suffices to consider the linear terms
only

2N

dgi

o Z[Bijrj —6i;Dilq; (43)
=1

As with the replication rate, the degradation rate is defined by D; = Nd(u;), where
up = (1/N)3, s,
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3.2. The Eigen Model in Operator Form

Using the creation and annihilation operator formalism, the dynamics can be
again written in the form of Eq. (11), with

N N N
—H =[laTo()+ (1 = )Ti(HINS [Z T3<k)/N] — Nd | > T(j)/N

J=1 k=1 j=1

N N N
=N [T[1+5100] 7 {Z Tz(k)/N} —Nd | Y TU)/N
j=1

k=1 j=1

~ Ne—HeZim uTiGN 7 [Z T3(k)/N] — Nd | Y T(j)/N (44)

k=1 j=I1

where the last expression is valid for large N. Corrections to this expression will
come from p| # p, the exponential not being exactly equal to the product, as well
as normal ordering terms. We will address these corrections later.

3.3. The Field Theoretic Representation of the Eigen Model

We introduce the Schwinger spin coherent states. We consider the normal
ordered form of the Hamiltonian, and first consider the expression : H :. We will
consider the commutator terms later. We find P({n}, ) can be expressed as in
Eq. (21) and the partition function Z can be expressed as in Eq. (28) with

M

Slz*. 2] = [ [(lzdle " {z1))

k=1

M
=2;(/) - 20(/) + Y 7)) - () — 1 (/)]

k=1

M N
+6NZ e Mh i ZGnua (DN £ Zzz(j)gﬂk_l(j)/]v
k=1 Jj=1

N
—d | Y 5 (Nosz1()/N (45)
j=1

For the partition function case, we have the boundary condition zy(j) = €%/ zy(j).
We introduce & = + YV, z(j)oszi—1(j) and e = & S0, zi(j)o1zi—1(j) to
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find, as discussed in Appendix C, that the partition function becomes
2= [DEDeNDIDye s (46)
where
S[E. & 7,n] = N/Ot di'{ — e e fIEW)] + dE()] + E(ER)

+ﬁ(t’)n(t’)} —NnQ. 47

3.4. The Large N Limit of the Eigen Model is a Saddle Point

The partition function of the Eigen model is represented as a functional
integral. In the limit of large N, this integral can be evaluated by the saddle point
method. The saddle point conditions are

88 Trf@e/g dt'[i.01+8.03]
— =0= Néc — N — _

3& €5 Mlesne TrT o dt'Tico1+c03]
58S

98 =0=—Ne "eM f'(g,) + Nd'(€.) + NE.
& Ec bl e

il TrT oy elo @ lico1+Ec0s]

- =0= Nnc — N o )

877 écvéuﬁcﬂh‘ TI'Te(IO dt'[iicor +E.03]

58S

o =0=—Nue e f(E) + Nije. (48)
n E EerTeoTe

Evaluating the traces, we find
fe=e e fi(g) —d'(&)
_ &
@+
Ne = /'Le_mel”h‘f(gc)
e = —— > tanh[72 + £2]"” (49)
[z +&2]"

Ne = 4/ 1 _Scz
NeNe + écgc =/ ﬁz +‘§¢2

InQ = 1,/7 + &2 (50)

£ tanh 7[ 72 + £2]'*

At long time, we find
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from the second and fourth lines of Eq. (49) and from Eq. (107). Using Eq. (50)
in Eq. (47), we find that &. is the value which maximizes
B2 _ emeVIE £ - d(eo). (51)
tN
This is the saddle point expression for the Eigen model partition function. It is
valid for arbitrary replication rate functions f and degradation functions d.

As an example, we calculate the error threshold for two different repli-
cation rate functions. For our first example, we take the case of f(1)= 4
and f =1 otherwise. This case leads to the phase transition at de™* = 1.0%
For Ade™ > 1 a finite fraction p; of the population is at & = 1, whereas for
Ae™ < 1, all of the population is at & = 0. The fraction of the population
at £, = 1 is determined by the implicit equation p; f(1)+ (1 — p1) f(E # 1) =
InZ/(tN)le,, which gives p; = (de™" —1)/(4 — 1). For our second example,
we consider the quadratic fitness (&) = 1 + k£2/2.0) We find a phase transi-
tion at k/u = 1, where the selected phase occurs for k/u > 1 with magnetization
& = +/2[/1 + u2(1 +2/k) — 1 — u2/k]"2/ . The observable, surface mag-
netization, uy, is given by the implicit expression f(u.) = InZ/(¢N)|¢ , which
for the Eigen model is a non-linear, transcendental equation even for the quadratic
fitness case.

3.5. O(1/N) Corrections to the Eigen Model

There are O(1/N) corrections to Eq. (51). The first comes from

12
M =M 14+ — 52
e e ( +2N) (52)
The second comes from the normal ordering of f and d:
Ld>f(§)
Af ==
/ 2 dg?
1 d%d(&)
d=— 53
2 dE? (53)

The third term comes from the approximation made in the last line of Eq. (44).
N 9 N

1+ *r ] N o VT

/1:[1 [ + N 1(J) Jl_[l e

— XL HTIG)/N

— e (54)



990 Park and Deem

since : T,(j)" : = 0forn > 1 due to constraint (4). The fourth term comes from
normal ordering T1(j) in exp[Y}_, uTi(j)/N] and T3(j) in f[X}_; T3(j)/N]
in f:

N
e heXI KGN, £ [Z I3()/N }

i=I

N
= e Ml KN ¢ [Z T3(i)/N:| :

i=1
de Hetn

dn

df(é)
=2 TN 98 L=y noyN

1 N
X+ 2N BO) = Ti)TG) /N

j=1

N
= :ef"ezi'il"T‘(j)/Nf |:Z T3(i)/Ni| :

i=1

detiem df€) LS ngyn
dn eyt noyn 46 =g now N 5
> e f(5) + e Gk (55)

where ; = % Zj.v:l Z;(j)o22,—1(j) . Introducing this new field, we find k. = 0 at
the saddle point. Moreover, we find

TrT oyelo o+
K, =

— = =0 56
TI'TefO dt'[ijo1+E.03] ( )
The trace evaluates as (0,) = 0. Thus this fourth, commutator term vanishes.

There are also fluctuation corrections to Eq. (51). These are discussed in
Appendix D. Using the results of Egs. (49), (50), and (129) we find

an _ _£2 1/ /1
7N_:exwwdlaf@a_ﬁﬂ&y+ﬁﬁ[1—[1—c/byu]

(57

where the constants a’, b’, and ¢’ are defined in Eq. (127). This is the expression of
the Eigen model partition function accurate to O(1/N?). The expression is accurate
for arbitrary smooth replication rate functions f and degradation functions d.
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Fig. 2. The O(1/N) shift in the free energy is shown (circles). Also shown is the prediction from
Eq. (57) (dashed line). We use f(m) = km?/2 + 1 and d(m) = 0 with k/pu = 2 and pu = 5.

Shown in Fig. 2 is the comparison between this analytical result and a numerical
calculation following the algorithm in Ref. 7.

4. THE FULL PROBABILITY DISTRIBUTIONS FOR
CONTINUOUS-TIME QUASISPECIES THEORY

In this section we derive the field theoretic expressions for the full probability
distribution functions of the parallel and Eigen quasispecies theories. By use of the
coherent states formalism, we are able to derive the distribution for arbitrary initial
and final conditions. In the long time limit, the initial condition will not matter, as
the system will reach a steady state. The final condition matters, though, because
the weight assigned by the field theory to a given final condition is exactly equal
to the probability that a given surface magnetization occurs in the population of
viruses.

4.1. Field Theoretic Representation of the Full Probability
Distribution of the Parallel Model

To obtain the full probability distribution P({n}, #), rather than simply the
largest Frobenius-Perrone eigenvalue, for the parallel model from Eq. (21) we add
a term

N
85 = =Y () - zas(j) + Jo(j) - Z5())] (58)
j=1



992 Park and Deem

to the action. We find

d
) _ - 7 59
({n} t) % ({ 0}) 1_[ 0J (/)(j) 8']0‘10(/)(]) ( )

Jr=Jy=0

Here a(j) =2 — n(j) is the value of the spin at the final time, and «((j) =
2 — no(j) is the value of the spin at the initial time. Evaluation of this expression
is carried out in Appendix E. Here we use the result of Appendix E for a couple
different types of initial conditions. We define Q;; to be the matrix element of the
matrix Telo 4o +E(t)os],

If, for example, we say that at + = 0, the spins are distributed randomly,
but with a given initial surface magnetization, u(, then we take the terms in the
multinomial expansion of (Q1; + Q12 + Qa1 + 02,)" that satisfy the initial and
final conditions:

P(u. tlug) = lim / [ ’deékdsk]eezz”1[Nf(sk)—Nsksk—Nu+Af]
2

. N(
min[N, N(12+u)q ( ;uo)]

N! S
<y M ohohohos @
11! 2! 3l ja!
Jji=max[0, Y0ty J1:J2:]3:]4
where ji + o = N(1 +u0)/2, j1 + js = N1 +u)/2 and ji + jo+ j3+ js =
N.
Alternatively, if we take an initial condition with spin up and down equally

likely ({uo) = 0) and define Q4 = Q11 + Q2 and Q_ = Q12 + Q2 we find

Pu,t) = 11rn /|: %} eelecl/’:l[Nf(Ek)*Ngkfk*NﬂvLAf]
2

: (N(l —Ij\—[u)/z) 0. [E1V T 0_[E]V o

4.2. The Large N Limit of the Full Probability Distribution
for the Parallel Model

Since the full probability distribution is also expressed as a functional integral,
it can be evaluated by a saddle point in the large N limit. In the saddle point limit,
this equation becomes

14u, 14u l—u, 1—u

Z[f(&)—sksk—m i

In P(u, 1) _
N

14+u 1—

o+ —2mo- (62)
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with
& = f'(&)
£ = I+u 1—[5:11 [1 + epoy + €§03]o3 Hlﬂikﬂ_[[ + enoy + €£03]11421
2 12,11 + epor + e€oshinsa
1 —u [TI2 1 + epor + €&oslos [11 4 [ + epor + €&o3]1242
2 T2, 1 + epor + €€io3] a4
= ot + 1 ot 63)

In Appendix F we evaluate these expressions where the probability distribution is
large, in the Gaussian central region.

4.3. The Parallel Model Distribution Function in the Gaussian
Central Region

Adding the terms from Appendix F together, we find that the probability
distribution becomes Gaussian in the central region. That is Eq. (62) becomes

In Pu, 1) = (const) — l8142 <_f/(u*)) (64)
N 2 20y
We, therefore, conclude that
_ . 2y
((u—u)) = N () (65)

The fluctuation correction to the fitness is given by

1 1
(f@) = fu) + [l —uy) + Ef”(u*)<(5u)2> +0 (ﬁ) (66)

From expressions (41) and (65), we conclude that there is also a shift of the average
magnetization for finite N:

1
=)= gran [\/111;53[1 —[1= @ (1 -8)"/u]"]
WIRATRY
S (uy)

(67)

4.4. An Alternative Derivation of the Fluctuation Corrections
to the Parallel Model Distribution Function

As an alternative, we may compute averages of the magnetization from the
full functional integral expression for the partition function. Computing the surface
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magnetization From Eq. (61), we find

Y u P, 1)

(u)(t) = SN

M . =
~ im [H M} S NN A1)

M—00 21
k=1

v O+[E]1 - O_[£]
x(0+[E]1+ 0-[ED" 0.6+ 0[]

/ 11m [ “Ndé"dg"} € XM INF(E)~NE &~ N+ Af]

M—o00

x(Q+[51+ O-[ED" (68)

This expression, however, is not easily calculated in the saddle point limit.
Computing the fluctuation, we find

S uP P, 1)

2 —
>(t) B Zu’ P(u/’ t)

M . -
= lim |:l_[ %} o€ LAt [Nf(E)~NEE—Nu+Af]

B M—o0 27‘[
k=1

x(0+[5]1+ O-[ED"

[(Q+[§] - 0-[E]* + 4Q+[§]Q—[§]/N}
(0+[E1+ 0-[5)?

11m “‘N ENAE Sk | eyt (N7~ Nati-Nu+Af)
M—»oo 27'[

x(0+[E]+ Qf[é])N (69)

This equation implies

2y _ 0+ —0- 2 1 —uj 1
((u—(u)))_<<6 0.0. >>+ ~ +0<ﬁ>' (70)

The term (1 — u2)/ N is the variance of the spin ata givensite | <i < N.The term
((6AQ/Q)?), therefore, is N — 1 times the O(1/N) correlations between spins
at any two different sites 1 <i < j < N. Base compositions at different sites,
while equivalent, are not uncorrelated. There is a O(1/N) correlation between
base compositions at different sites.
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Fig. 3. The O(1/N) shift in the variance of the surface magnetization is shown (circles). Also shown
is the prediction from Eq. (65) (dashed line). We use f(m) = km?/2 with k/p =2 and . = 1.

The variance can be written as

/ 2
f d(Su)e=NF o () gbS (8 QQ+ )

L0

((u =)’ = fd(Su)e Nf'(ue)du? [(4u.) oS (7D
where
1 1 1— 1—
5S/N = In(0, + 0_) + +”n RIS
2 2 2
1
+ "mo,——“mo_ (72)
We note that
88 11—
N2 f( D2u + O(Su’) (73)

Using Egs. (140), (141), (71), and (73) we find exactly Eq. (65), which shows
the consistency of the two calculations. This second calculation, however, makes
explicit the contributions of spin-spin correlations to the fluctuation of the popu-
lation in genome space. Shown in Fig. 3 is the comparison between the analytical
result of Eq. (65) and a numerical calculation following the algorithm in Ref. 10.
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4.5. Correlation Functions of the Parallel Model Field Theory

Since the theory is Gaussian in the saddle point limit, we can evaluate corre-
lations from the inverse of the Hessian in Eq. (39). The inverse is given by

—Nef"(E) Nel -
A= eNI  —Né? ;kazM + Ne2I (74)
From Eq. (100) we find
-1
1 (=/"G) 1
x(k) = 4w’ (75)
Ne I = gpap te
Inverting this matrix, and inverse Fourier transforming, we find
1
(081081} = — 78
—i—i 1- 52 g 2elk=lIn/D* =" /b
N 3/2
J1=(1=8)" o/
1/ 1/ 2
oty = L85, LEF,
N
f ”(5 ) 1- 52 o 26Wk—lI/P= "€ /b
N 3 2
Ji- P e
z 1 S (&)
8&k88)) = —8u — 1)
(8€0;) e lu T
D) 1-& o2k 11/B [ ER b
N 3 2
Ji- 2 e
(76)

fork,I> landk,! <« M, where b = n//1 — &2.

4.6. Field Theoretic Representation of the Full Probability
Distribution of the Eigen Model

The full probability distribution for the Eigen model is expressed as a func-
tional integral in an analogous fashion to the parallel model. For the Eigen model

we find
Pt = gim /[ zeNdEkdskzeNdnkdnki|

21 21
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xeN Sl etk f(E ) —d () —Erk—Tikne

N
x Y P(tno}) [ THOUDN et} (77)

{no} Jj=1

where
M

0() = [ U + eiixor + €]

k=1
~ Te€ il Lo +os]

= Tef() dr’ [ﬁ(t )0’]+§(t,)03]. (78)

Taking an initial condition with spin up and down equally likely, we find

M = -
e Nd&dE, ie Ndnid
P(u’I)ZA}i—Igo [Hlf Erd&r ie Ndijy 77k:|

i 2 2

sc €N Tl ek £ (6)—d (60— —Tikme

) <N(1 —]i\-[u)/z) oMo E . (79)

4.7. The Large N Limit of the Full Probability Distribution Function
of the Eigen Model

Since the distribution function is expressed as a functional integral, it can be
evaluated by the saddle point method. In the saddle point limit, the probability
distribution function becomes

M

In P(u, - 3 ]
% _ . Z[e HERME f(E) — d(E) — Exér — TTknx]
k=1
4w 14w 1-u 1—u
In - In
2 2 2 2
1 + no, + Y 0_ (80)

with

Ec = e T (&)

1 1—
& = +“<a3<k>++

(03(/()%
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Fig. 4. The O(1/N) shift in the variance of the surface magnetization is shown (circles). Also shown
is the prediction from Eq. (84) (dashed line). We use f(m) = km?/2 + 1 and d(m) = 0 with k/pu = 2
and u = 5.

i = pe I f(E)
_ 14+u 1—u

me=— (o1(k) 4 + 7

In Appendix G we evaluate these expressions where the probability distribution is
large, in the Gaussian central region.

(01(k)) - @81

4.8. The Eigen Model Distribution Function in the Gaussian
Central Region

The probability distribution function for the Eigen model becomes Gaussian
in the large N limit. Using the results from Appendix G, we find that Eq. (80)
becomes

In P(u, t) Lo, f(u) —d'(uy)
—_— = t) — =8 - 82
N leonshm o ( 2piuf(a2) (82
We, therefore, conclude that
2y f(uy)

(83)

f— 2 =
(= ())’) N[ f/(uy) — d'(u,)]

From Egs. (66), (57), and (83) we find the shift of the average magnetization to be
1 1
=) = b [1=[1 =] - it ) W) | gy
Nf’(u*) f/(u*) _ d/(u*)

Shown in Fig. 4 is the comparison between this analytical result and a numerical
calculation following the algorithm in Ref. 7.
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5. CONCLUSION

We have derived exact functional integral representations of the Crow-Kimura
and Eigen models of quasispecies theory. The functional integral representation
of these quasispecies theories is quite convenient because it allows us to obtain
the exact infinite genome solution of these models as well as to obtain the finite
length genome corrections. These exact results allow us to discuss the phase
transitions that occur in these models as a function of mutation rate. The coherent
states derivation of this functional integral also allows us to compute the full time-
dependent probability distribution function of the population in sequence space,
including the dependence on initial and final conditions.

The functional integral representation leads to an interacting field theory for
spin and mutation fields. In the limit of long genomes, the field theory becomes
Gaussian. We have evaluated the theory in the infinite genome limit to give the
mean replication rate for arbitrary replication and degradation functions. These
results were used to exhibit the phase transitions that occur in quasispecies theory
as a function of mutation rate. For smooth replication and degradation rate func-
tions, we have evaluated the O(1/N) corrections to the mean replication rate. We
have also derived the finite, O(1/+/N) width of the virus population in genome
space in this limit.

The functional integral representation can be applied to generalizations of
the quasispecies theories considered here. The extension of the present results to
arbitrary replication and degradation functions that depend on distances from K
points in the space of all possible genomes is straightforward with the introduction
of overlap parameters.'*) With the Schwinger spin coherent state formalism, the
extension to genomes with alphabets larger than binary™ is also straightforward,
since the field theory in z* and z remains Gaussian due to constraint (4).

APPENDIX A

To evaluate the partition function of the parallel model, we introduce &; =
% Z?/:l z;(j)o3zi—1(j) with the representation

M 1 N
[ peTT8 |- 5 S itosu
k=1 j=1

M-
= f 1_[ % e YL EE—§ Tl X 1 (DEosz ()
palie 2

M . =
— / |:1_[ %} o€V L e L YL 20 (DEkoszi1 () (85)

21
k=1
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We thus find

M— o0 2

M . =
Z = lim [H“‘N dékdék} o€ SiLIINS(E)~NE&—NutAf]
k=1

N
. M sl o .
% / DADz* Dz 1_[ e g™ Lii=i Zk(j)S(j)k]ZI(j)|{zo}:{e“\zM]
Jj=1

M . =
. [n M} e SNt

M—>00 Pl 2
N
x f D] Je ™ det S(HI™! (86)
j=1
The matrix S(;) has the form
I 0 0 oo =M A())
—Ax(j) I 0 . 0
S(j) = 0 —As(j) 1 0 (87)
0 e —Au(j) 1

where Ay(j) = I + euoy + €£ro3. We find

k=1

M
detS(]) = det |:I — e”‘i HAk(])}
= det [[ — et ]A"eé 2}24:1[“0'1“"51(03]]

— ol [I—e""‘f et L [#"1+§k03]] (88)
Here the operator T indicates time ordering. The partition function becomes

M . =
Z = lim |:H %] ef S INS(ED)—NEE —Nu+Af]

M— o0 21
k=1

N o ; _
=1
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M . =
— lim []‘[ %} o€ S IN (60~ NEE— Nt A7)

M—o00 Pl 2
N
<[Tew (89)
j=1
where
M
0(j) = Te[ U + epor + eéio3]
k=1
~ TrTet S nor+Eos]
— TrTels 4! lnoi+E)os] (90)
APPENDIX B

In this Appendix we evaluate the fluctuation corrections to the parallel model.
The second term in the last derivative of Eq. (39) is given by

Tro'3efM(lw] +£.03) é , )
T eM(uo)+E.03) = N L_z 12 tanht[p} + scz]
re O3 [M + éc]

&
Nmastaoo o1

The first term in the last derivative is given for k #£ / by

1/2

€ll—k|(uo+E. e(M—|l—k|)(no1+£€.03)

63)036
TrecM(noi+€.03)

Troze

g2 2 cosh(t; — 1),/ u? + 53
= ¢ = + =
) 2. 2 -
wr & nHE osht w? + &2
e Ve
~——X __ 4 e =LI=DV I+ a5t s 00 92)

pr+ 82 P42

where t; = €|l — k| and t, = e(M — |l — k|). For k = [, the first term in the last
derivative is zero from the first line of Eq. (90). We find

328 2 w2

——_ = —Ne — My + Ne*8y, (93)
0,08 u* + &2
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where
My = eSIM=21-HI=-M1/12+82 (94)

We let iy = 8&;/(e N) and 1y = 8&,,/(¢ N), and the partition function becomes

: M i did
7 = e 5E5) [im 1‘[ FAMKGTIE | 172 35,0 €t =27mi]
M—o0 e 2

2 o
32k [G 7{152 Mklnknz—enkn/5k1:|
xe wTse

95)
We let ;= ink/ f" (&) and 7, = 7 // f"(§.) to obtain
M =/ ’
7 = efs(g“’s") lim 1_[ M e71/2 2k 7],’2+i omm
M— 00 1 2
22 [e LD My €S € 7][5k1:| ©6)
Integrating over 7', we find
7 = ¢ 5E8) [im ﬁ d—ﬁ; R [5"’_6 S Mrves ”(&)&z}ﬁ;r‘n’
M—o0 el 21
M di
— oSG8 L | =2 Xk i Fial
=e 1m e
M—o0 [ﬂ N2 :|
= ¢ SCE)(det )71/ 97)
where
2 1
(&)
Fig = 8 — 6M2—+§;Mk1 + €f" (6
c
a
=0 — €7 Mu + ef"(E)du (98)

where a = p?f"(&.) and b* = p? +E2. We define F', where Fy = Fj, +
€f"(&.)81. We note that

det F = det [1 Fef"(E) — E%M]

= (det[] + e/"(E)]) (det [1 - E%M[I te f”(gc)u*l])

~ (det[] + e/"(E)]) (det [1 - G%M])
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— (det F')eTr ll+e/" (&)
~ (det F')e™ /")
= (det F')e'/" ) (99)

To evaluate det F’ we use Fourier space. We find

R 4€2q 1
Flhy=1— ——0r— 100
*) b 4b2e2 + 2 (100)
and
detF'=[[u=]]Fk (101)
i k

where k =2an/M =2men/t, n =—-M/2,...,(M — 1)/2. In the limit of infi-
nite M, we find

sinh /B2 —ajb)
( )

(sinh br)?

detF' =
] 172\ ?
<sinht I:/LZ + &2 — w1 P+ éczi| )

= 2
(sinh 1/ m?+ éf)

—ZII:«/ u2+§3—[uz+§f —12 [/ A/ M2+§3] "

172
} ast — oo (102)

~ e

Using Eq. (37), (97), (102), and (99) we find the mean replication rate at large
time becomes

InZ : - Af (&)
N =f(5c)—f;'c§c+\/li2+5{;2—li+7—W

l £ 1= 7" _ £2\3)2 1/2

m@[l (1= /"G =?/u]™] (103
with

é?L‘:f/(%_c)

£ = %tanht[uz +&2]'" (104)

[u? +£2]
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APPENDIX C

To evaluate the partition function of the Eigen model, we define mag-
netization and mutation fields with & = %Zyzlz}f(j)aﬂk_l(j) and n; =
% Z;V:l z;(j)o1zi—1(j) to write the partition function for the Eigen model as

M = M —
. ieNd&d&;, ieNdnidny
Z = jm |:l_[ 2 :| |:1_[ 2w :|

M—o0
k=1 k=1

s eV Tl [e e (g —d(E0)—Erke—emi]

N
. M ([ . ;
X / D)Dz*Dz 1_[ e~ ™ L= HUSUw () l{z0)=te* 201}
Jj=1

M = M —
. ieNd&d&;, ieNdindny
=, |:l_[ 2 :| |:1_[ 2w :|

M— o0
k=1 k=1

N Ll ek f(5)—d(E)~Ersi—im]
N
X / [DA]] [ e [det S()]™ (105)
j=l1

The matrix S(;) has the form of Eq. (87) with Ax(j) = I + €fjro1 + €&r03. The
determinant and constraint evaluate as in Eqgs. (88—89) to give

M z M —
7 — lim 1—[ l€ dSkdék 1—[ ldende]k
M—o0 e 2 Pl 2w

sceV Ly e e f(E)—d(E)—Erge—Tim]
N
<[Tew (106)
j=1
where

N
0()) = Tr [ U + eiigor + €3]
k=1

~ Tri"ee Z}thl [fiko1+Ex03]

— TeF el drli@m+E)os] (107)
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APPENDIX D

We here determine the fluctuation corrections to the mean excess replication
rate per site, (In Z)/(¢N), in the Eigen model. We expand the action around the
saddle point limit

1 &1 92S
S[E. &.7. 0] = SEe. & flen) + = [ — 8&5;
2 k=1 98,98 Ec.EeaTlene
928 - ’ oy
= 8688 + ——= 86168
08k981 |z, ¢, 7. 08081 1z, 2. 7.,
39S :
Snidny +2 - SNk
a’?kanl E. Ec iieane 8nk8nl e EerTlene
928 o
—— 3Nk 67
8nkanl éuéc,'_luﬂc
82S 2 _
= 3801 + 2 = Onidé;
&L |z . 5., ONkIE |z, g, 7.,
3%s : _ oz
2 8ESn +2 —— 577/{551}
&k g ¢, 7., OMk9&1 g, ... .
(108)
We find
) _ —muy+pne £/ "
= —Nee S (€)8k + Ned" (§.)8k
9810 &.&cilene
9%S
= —Nepe ™0TMe f1(£ )8y
85](8771 ‘i—:mém’_]unc
9%S _
— —N€M2€ muHrImcf(Ec)(skl
Nk |g, g, 7,
9%s
= = EN(Sk]
08081 1z, 2. 7.,
928
= = eNdy
ankanl é—:mém’_]unc
925 , Trars €l K001 +5:05) g pe(M—l1—H{ (e +E:0)
— = —Ne e (1 = 6r1)
98081 Iz, &, e Tre€M(@ico1+£c03)
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2 Tro-3 eeM(ﬁcU'l +§EU3) 2
NE —_—
+ TrecM(icor+éco3)

928 5 Tro, eéllfkl('_h-erﬁcag)o,lee(Mf\lfk\(ﬁcaﬁLﬁc@)
Nk 07 E i = e TrecM@co1+iicos) (1 = 8r)
5 Tro'l eGM(ﬁcUl +1]c03) 2
+he ( Tre€M(icor+ic03) )
HERY 2 Tro3e€(l—k)(’7c01 +§ct73)al ecM=I+k) (o1 +E.03)
= = —Ne _ 1—§
011,08 B el ne >k TrecM(@ico1+4.03) ( )

, { Tro, e Mo +é.03) Troy et Mo +E.03)
Ne _ _
+ TrecM@ico1+éc03) TreeM(ico1+E.03)

EERY
A7k 0&

, Troy e€k=D)iicon +§c03)03 e€M—k+D)(fc0n +£.03)

(1 —8u)

TrecM(icon +&.03)

2 Tral eGM(T_]cUl +§CU3) Tro'3 ee M(icon +§ca3)
Ne . _
* Tre€M(@ico1+5c03) TrecM(ico+E.03)

€ fiesne,I<k

(109)
The other two derivatives in Eq. (108) are zero. We find
Tros e Mco1+£co3) _ éc . nht["z N 52]1/2
TrecMGicoi+Eos)  — [72 4 E2]1/2 a Ne c
re [z +&71
~ % ast — oo (110)
[z + &21"
and
Traseé\lfk\(ﬁcm +§c03)o-3e€(M*|1*k|)(ﬁp01+§cﬂa)
TrecM(icon +£.03)
_ g o cosh(t; — )/ 72 + &2
ﬁg +$c2 ﬁg +Ec2 cosht /ﬁ§+§3
£2 =2 _
SO S RN (111)

n+E2 i+ &2
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where t| = €|l — k| and t, = e(M — |l — k|). We find

92S i
- = —NGZ%M&—FNGZ(SH (112)
0€,0&; n + &
where
M, = eELIM=21I—k||-M]/72+E2 (113)

The other traces evaluate as

Tro‘l eEM(ﬁco'l‘i‘éaUS) f]c

Tre¢M@ico1+£.03) - [ﬁg + 53]1/2

tanh ¢[77; + §71'/2
N~ = ast —> oo (114)
(72 + £2]'/2
and
Traleéll—kl(ﬁcﬂl+§c03)alef(M—V—kl)(flcﬂl+§c¢73)

TrefM(ﬁc(rl+§Ca3)
- - 72 £2
2 . £2 ] cosh(ty — 1),/ 712 + &7
n:+&2 ni+éE2 cosht\/m

=2 2 —
N 5 el =2lOVER 5t s o0 (115)
nc + EC nC + %-C

We also find
Tro-letl(F]L“71+§<“73)o-3et2(’_](”1+§c‘73) Tra3efz(77cf71+§cﬂ3)o-lef1(ﬁcl71+§r<73)

Tret(flcal+§cf73) - Tref(r_}cm"'gc‘ﬁ)

ﬁcgc ﬁcéc COSh(tl - t2) ﬁ% + ECZ

GO +E R+E cosht\/m
_ ncéc_ __ ncgc_ elin=tl=0+/ 2+E2 ast — 0o (116)
i€ mAE
We, thus, have

328 g2

— = —Ne>—*_ M, + Né?s 117
9107 g2 M Y ()
and
328 92
— N2 By (118)

S oF T anoaE '€ 1 E2
0ir0&  0n0&; 72+ &2
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With these results, letting primes denote the fluctuation variables, and setting
W1 = W, the partition function becomes

M. = 0, M. o
- SGEekeiion) 1 ieNd§d§; ieNdijdny
Z=e ]\/}E;noo |:1_[ 27‘[ l_[ 27‘[

k=1 k=1
x @1/26N Ll [0 7D 160 —d (€5 +2met D f (€5
el /26N L [Pt e £ oy ” ~28 (5 ~27n;)
xe 1/2E NZA/ 1 ncéké‘} 271(&711651 Ezmm] 2 52

Xe—1/2€2N S EE 47,16 (119)

We remove the primes, letting ij, = fix/~/e€ N, n, = —ing/veN, & = & //€N,
and £, = —i&/~/€N,to find

M oz M -
G r . d&rdé; dirdn
_ =S EesTesne)
Z=e A}E;noo |:1_[ 27‘[ ]!:[1 27T

k=1

s V2 T 17608 ~d (68 +2pe ) f G

xe 112 Sl et e=h £(e i —2iExgx—2i k]

T v
« 61/25 > =i 2611 =27 Ec ks +E7 ki ] el
sce™ /26N S il (120)

We let x; = (&, nx). We denote the summand that does not involve bars as

1 T Tp — um—1) fE) nfée) ) <d”(€c) 0)
xk ! BT Bx;; thatis BT B = eMn (Mf’(&) W2 F(ED) We let
Ne —

Yir = Bxyandy, = B‘lTik.Wenoteik SXp = Vi - Yi. WeletC = - ( _E )

&I

The partition function, thus, becomes

~ M d 7] M d_
7 = ¢ SCekeiieane) 1im 1_[ ﬂ l_[ ﬂ e~ 112 SV D242 =2iFkyi]
M— 00 el 2 1 2

1/2¢ o4y [5] BCTCBT3) —5k1yA BBTy]
xXe ’Zc
-
Ec kol LM 12 -
= ¢ SEEAI) fim 1‘[ e | -y 5 B3
M— o0 2
LM T
7€ I BCTCB y1 —Sldy(BB i1
we? 2=l p



Schwinger Boson Formulation and Solution of the Crow-Kimura 1009

B M v
— o SCETien) {im l‘[ﬂ o3 Shim VL Fi%i
M— o0 el 2m

— e*S(i,&»,ﬁmﬂc)(det Fry-12 (121)

where

M/
Fy =8yl —e—"=BCTCBT +e8yBB'
c c

= F/ +€e8uBB' (122)

‘We note
M/
det F" = (det [1 +€BB'I — e_—“_BcTCBTD
02+ &2

M/
= (det[/ +€BB']) (det [1 — eT"lngCTCBT(I + eBBT)-ID

~ (det F"")[det(8x + € BB 81)]

— (det F///)eTr ln((sk/-l—eBBT&(/)
~ (det F///)eTl'EBBT(Sk[
— (det F///)etTrBBT

— (det F///)etTrBTB

= (det F")e!®"" "L €t fE—1d' @) (123)

To evaluate det " we again use Fourier space. We note

N 42 1
F"k)=1-BC'CB"— —— 124

(k) TS (124)
where

b= [+ )"
pe et £(&)
-8
_ pere VIR f(g,) (125)

N
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We find
det F” = [ [ det £ (k)
k
4¢? 1
—[Jdet(1-BCTCB™ = ———
. b’ 4b?e? + k2
4¢%a’ 1
~]_[ l——————— ) ast > o0 (126)
. b 4b2e? + 2
where

a =TrBC'CB" =TrCB"BC"
= "V [ (&) — d" (e 1] — 201 Ecuf (Ee) + EX U (€]
= et Dp? (207 (E) — d"(E)e M) — 2n ki f'(E) + E2 1L f(E)]
N

¢ = et [<1 C ) — e VIR (E)]

—2u4/1 = SESCf/(éc) + Mzéczf(éc)}

(127)
From Eq. (102), we find
2
(sin}m/bf2 — a’/b’)

det F"" = - 5

(sinh b't)

’ 72 1
2] (128)

Using Eqgs. (47), (52), (53), (55), (56), (54), (121), (123), and (128) we find the
mean excess replication rate at long times becomes

= ell(ﬂc—l)f(g_-c) - d(%_c) - écg:c - ﬁcnc + vV ﬁg + 5(32

1, ;137172
+Nb[1—[1—a/b3] ]

InZ
tN

(129)
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APPENDIX E

In this Appendix, we evaluate the functional integral expression of the full
probability distribution function for the parallel model. Here Z has the form

M . £
7 = lim [1—[ ieN dékdfk} o€ T NS (6= NE&—Nut+Af]

M—o0 2w
k=1

T

M N .. .
x / HHM‘Z"Z"U) o Ttco i (DSu(yaG)
k=0 j=1

eI I 2D+ () 2]

M . z
= f [1‘[ ieN dékdé’f} o€ ZiLi NS (G~ Néi&i—Nu+A1]
2
k=1
. N
sce =1 FoDSoy(NI* () H[det S(H1™! (130)
j=1
where the matrix S(;) has the form
I 0 0o ... 0
4Gy I 0 ... 0
siH=| O AW 0 (131)
0 e —=Ay(H T

Equation (59) evaluates as

M -
e NdEd . :
P(in}.1) = lim / [| [ i ék:|eéZKI[N)‘(&)—N&&—N;HM]
k=1

2
N
< Y P({mo}) [ TUQ(Naoirein} (132)
{no} j=1
where
M
0(j) = [ [ + enor + e&ios]
k=1

~ ]A“ef YL [uor+Eos]

— f"efo'df/[/wﬁg(l’)@] (133)
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APPENDIX F

In this Appendix, we evaluate the expressions necessary to determine the
parallel model distribution function in the Gaussian central region. We define
Uy, = limy_, oo (u) and u = u, + Su. We note that & = £(¢’) satisfies

E)=u,,t' =0
El) =&, 1< <t
EW)=ut' =1t (134)
We note that to O(8u?)
E(uy + 8u, ') = E(uy, ' + 81) (135)
in the range 1 < ¢/, where

du n— f/(u*)/u* (Suz

8t =— 136
2y (Quu)? (136)
because the differential equation
d&(t’
D b 0o+ 1~ 0o (137)

is invariant under this shift, and the boundary condition £ (¢) = u, + Su is satisfied
to O(8u?) with the chosen value of 8¢, Eq. (136). We now evaluate Eq. (62) to
O(8u?). Using the shift property (135) and conditions (134), we find to O(6u?)

4 - % * 8
[ 1) = By - e = wonsty — ey 4 o U0

U [/ () + (s + Su) £/ (s + Suy)

+8t[E f'(E)] — ot > (138)
and
14+u. 14+u 1l—u,  1—u 14w, 14 u, 1 —wuy 1 —u,
— In — In = — In — In
2 2 2 2 2 2 2 2
1 . du? 1
—Suln (139)

1 —u, 21— u?
Using the shift property (135) and boundary conditions (134), we find to O(5u?)
[O@u. + su)]+ BUARE S 1 —u, 1 4+u, ,
0. e Tt Skt — S ()

8t2 1 + u,
2 2

(=200, /(1) + 1> + f'(w)) } (140)
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and

[O(u, 4 bu)]- e 1 —u, Y 1+ u,
0. 2 2
82 1 —u,

2 2

1—u, ,
w— 2”f@0>

&wq%m+M+fwﬁ] (141)

where A, = /2 + E2.

APPENDIX G

In this Appendix, we evaluate the expressions necessary to determine the
Eigen model distribution function in the Gaussian central region. We note that to
0(5t%)

E(uy +8u, t') = E(uy, t' + 8t)

nN(uy + Su, t') = n(uy, t' + 8¢t) (142)
in the range 1 < ¢/, where
8 ! x) ! * * * 2d *
5t — u +d(u) f(U)+Wf(u)2+W*d(u)5uz (143)
2ty f(uy) u[2puy f(us)]
because the differential equation
sy iy
g = O+ w)oa(k))y + 7)1 — u)loa(k)) - (144)

is invariant under this shift, and the boundary condition &(¢) = u, + Su is satisfied
to O(8u?) with the chosen value of 8¢, Eq. (143).
Using the shift property (142) we find to O(5u?)

A [ (51 — d(E (N
= (const) — de[e™ "M f(£:) — d(E)] + 81 f (us) — d(u,)]

Stéu
*,1

d
+T |:f,(”*) - d/(u*) + S (us) ﬁ

= (const) + O(8u*) (145)
where
dn|  d <l+uQ_+1—uQ+>
dul,, dul,, 2 04 2 0

_ dw) — f(w)

146
wf () (146)
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We also find
/0 (B8 — 7 ()]

= 8t[§c§c + ene] — St[wf (us) + ”*f/(”*) - u*d/(u*)]

Stéu d
_% ﬁ [t () + 14 £ Q) + e f ()]
)
We also find
[Q(L“‘Q;S”)]“ = ek*‘”[l —i—zau* + 5t<1 _;M* wf ()
ra ) - )
82 (1 — au, dn 14+ au, dé
7( 2 W *,t * 2 W *!
1 " , /
2 [ ) + (f ) — d @)Y ] )] (148)
where

A= écéc + NeNe

.

d_Z = =gt (1) [1f () = 1 (w2 + pd ()]

dé d

d_f/ = —2pat f () [f ") — d" (i) + 1f (u) d—” } (149)
1 u *, 1

We also have Eq. (139).
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